Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

N, N^{\prime}-Bis[(E)-2-fluorobenzylidene]-1-(2-fluorophenyl)methanediamine

Jerry P. Jasinski, ${ }^{\text {a }}{ }^{*}$ Ray J. Butcher, ${ }^{\text {b }}$ Q. N. M. Hakim Al-Arique, ${ }^{\text {c }}$ H. S. Yathirajan ${ }^{\text {c }}$ and B. Narayana ${ }^{\text {d }}$

${ }^{\text {a }}$ Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ${ }^{\text {b }}$ Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ${ }^{\text {c }}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India Correspondence e-mail: jjasinski@keene.edu

Received 23 December 2009; accepted 15 January 2010
Key indicators: single-crystal X-ray study; $T=200 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.052 ; w R$ factor $=0.152$; data-to-parameter ratio $=23.3$.

In the title compound, $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2}$, the benzene ring bonded to the central C atom forms dihedral angles of 77.5 (7) and $89.0(5)^{\circ}$, respectively, with the remaining two benzene rings. Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds link the molecules into chains propagated in [101]. The crystal packing exhibits weak $\pi-\pi$ interactions as evidenced by relatively short distances between the centroids of the aromatic rings [3.820 (7) and 3.971 (5) Å]. A MOPAC PM3 optimization of the molecular geometry in vacuo supports a suggestion that intermolecular forces have a significnt influence on the molecular conformation in the crystal.

Related literature

For aromatic aldehyde reactions, see Williams \& Bailar (1959). For kinetics of hydrobenzamides, see Crampton et al. (1997). For conventional preparation of hydrobenzamides, see Kamal \& Qureshi (1963). For related structures, see: Corey \& Kuhnle (1997); Karupaiyan et al. (1998); Saigo et al. (1986). For bondlength data, see: Allen et al. (1987). For the synthesis of nitrogen-containing heterocyclic compounds, see Kupfer \& Brinker (1996). For MOPAC PM3 calculations, see Schmidt \& Polik (2007).

Experimental

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2}$	$\gamma=108.165(5)^{\circ}$
$M_{r}=352.35$	$V=839.23(8) \AA^{3}$
Triclinic, $P \overline{1}$	$Z=2$
$a=8.0215(5) \AA$	$M o K \alpha$ radiation
$b=9.3740(4) \AA$	$\mu=0.11 \mathrm{~mm}^{-1}$
$c=11.9744(6) \AA$	$T=200 \mathrm{~K}$
$\alpha=99.184(4)^{\circ}$	$0.49 \times 0.29 \times 0.22 \mathrm{~mm}$

$\alpha=99.184$ (4)
$0.49 \times 0.29 \times 0.22 \mathrm{~mm}$
$\beta=93.179(5)^{\circ}$

Data collection

Oxford Diffraction Gemini 5484 independent reflections diffractometer
11550 measured reflections 3292 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.025$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052 \quad 235$ parameters
$w R\left(F^{2}\right)=0.152 \quad$ H-atom parameters constrained
$S=1.00 \quad \Delta \rho_{\max }=0.57 \mathrm{e}^{-3}$
5484 reflections
$\Delta \rho_{\text {min }}=-0.20 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 5 B-\mathrm{H} 5 B A \cdots \mathrm{~F} 1 A^{\mathrm{i}}$	0.95	2.53	$3.3871(16)$	151

Symmetry code: (i) $x+1, y, z+1$.
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

QNMHA thanks the University of Mysore for use of their research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2683).

organic compounds

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Corey, E. T. \& Kuhnle, F. M. (1997). Tetrahedron Lett. 38, 8631-8634.
Crampton, M. R., Lord, S. D. \& Millar, R. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 909-914.
Kamal, K. A. \& Qureshi, A. A. (1963). Tetrahedron, 19, 869-872.
Karupaiyan, K., Srirajan, V., Deshmukh, A. R. A. S. \& Bhawal, B. M. (1998). Tetrahedron, 54, 4375-4386.

Kupfer, R. \& Brinker, U. H. (1996). J. Org. Chem. 61, 4185-4186.
Oxford Diffraction (2007). CrysAlis PRO . Oxford Diffraction Ltd, Abingdon, England.
Saigo, K., Kubota, N., Takabayashi, S. \& Hasegawa, M. (1986). Bull. Chem. Soc. Jpn, 59, 931-932.
Schmidt, J. R. \& Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA, available from http://www.webmo.net.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Williams, O. F. \& Bailar, J. C. (1959). J. Am. Chem. Soc. 81, 4464-4469.

supplementary materials

Acta Cryst. (2010). E66, o422-o423 [doi:10.1107/S1600536810001984]

N, N^{\prime}-Bis $[(E)$-2-fluorobenzylidene]-1-(2-fluorophenyl)methanediamine

J. P. Jasinski, R. J. Butcher, Q. N. M. Hakim Al-Arique, H. S. Yathirajan and B. Narayana

Comment

Reaction of aromatic aldehydes with ammonia leads to the long-known compounds called "hydrobenzamides" (Williams \& Bailar, 1959). Owing to their unique structural features and reactivity, these compounds have been recognized as potential key intermediates for the synthesis of a variety of nitrogen containing heterocyclic compounds (Kupfer \& Brinker, 1996). Extensive studies on kinetics and mechanism of formation of hydrobenzamides from aromatic aldehydes and ammonia have been well documented (Crampton et al. 1997). The only conventional method available for the preparation of these compounds involves the reaction of aldehydes with ammonia, a complex reversible reaction which takes days to weeks for completion (Kamal \& Qureshi, 1963). Moreover, protic solvents used in this reaction such as methanol or water enhance the reversible conversion of products into starting aldehydes, thereby reducing the yields even after longer reaction times. Due to the importance of these compounds, we report the crystal structure of a newly synthesized derivative, $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2}$, (I).

The title compound, $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2}$, (I), consists of a 2-fluorophenyl group and a $N, N N^{\prime}$-bis $[(E)$-(2fluorophenyl)methylidene]methanediamine group bonded to a methane carbon, C 1 (Fig. 1). The benzene ring bonded to the central methyl carbon atom forms dihedral angles of $77.5(7)^{\circ}$ and $89.0(5)^{\circ}$, respectively, with the remaining two benzene rings. The dihedral angle between the mean planes of the remaining two benzene rings is 15.7 (7) ${ }^{\circ}$. Five of the angles around the methane carbon, C 1 , are in the vicinity of the $108^{\circ}-109^{\circ}$ range $\left(\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{C} 2 ; 109.45(11)^{\circ}\right.$, N1B-C1-C2; $108.04(10)^{\circ}, \mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A} ; 108 .(2)^{\circ}, \mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A} ; 108 .(2)^{\circ}$, N1B-C1—H1A; 108.(2) ${ }^{\circ}$) with only the $\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{N} 2 \mathrm{~A}$ angle measuring $114.48(10)^{\circ}$ giving it a slightly distorted $s p^{3}$ configuration in the direction of the two nitrogen atoms. Bond lengths and bond angles are all within expected ranges (Allen et al., 1987).

Crystal packing is influenced by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ intermolecular hydrogen bond interactions which link the molecule into chains propagating obliquely along the c axis in the direction [101] (Fig. 2). In addition, weak $C g 2 \cdots C g 2$ (3.971 (5) \AA; - $-x$, $1-y,-z)$ and $C g 3 \cdots C g 3(3.820(7) \AA ; 2-x, 2-y, 1-z) \pi-\pi$ intermolecular interactions are observed with slippage distances of 1.81 (4) \AA and 1.76 (5) \AA, respectively. ($C g 2, C g 3=$ ring centroids for $\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$ and $\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$, respectively).

In support of these observations, a MOPAC PM3 calculation was performed on the $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2}$, molecule with WebMO Pro (Schmidt \& Polik, 2007) (PM3, Parameterized Model 3) approximation together with the Hartree-Fock closed-shell (restricted) wavefunction was used and minimizations were teminnated at an r.m.s. gradient of less than $0.01 \mathrm{~kJ} \mathrm{~mol}^{-1} \AA^{-1}$.). While the bond distances did not appear to change significantly, selected bond and torsion angles were noticeably different. The bond angle for $\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~B}\left(114.48(10)^{\circ}\right.$ versus $\left.111.3^{\circ}\right)$ is shorter and for $\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{F} 1 \mathrm{~A}\left(117.81(12)^{\circ}\right.$ versus 120.4°) is wider after the calculation. The torsion angles for $\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{C} 2\left(86.45(14)^{\circ}\right.$ versus $\left.78.17^{\circ}\right)$ and C1B-N1B-C1—C2 $\left(124.39(13)^{\circ}\right.$ versus $\left.96.35^{\circ}\right)$ are both much lower after the calculation indicating a much greater twist causing the two benzene rings to be further apart. This is supported by the PM3 calculated value of 36.79° (versus. 15.7 (7) ${ }^{\circ}$ before the calculation) for the angle between the mean planes of the two benzene rings. In addition the angles between the mean planes of the two benzene rings with the C 1 bonded benzene are 70.22° (versus. $\left.77.5(7)^{\circ}\right)$ and $82.32^{\circ}($ versus. $\left.89.0(5)^{\circ}\right)$, respectively, after the calculation. This suggests that small changes in some bond distances and selectively in

supplementary materials

some bond and torsion angles, especially involving the diamine nitrogen atoms have been infuenced by the collective effect of all of the weak intermolecular interactions that have been observed in the crystal packing.

Experimental

10 ml of 25% methanolic ammonia was added to a solution of 2 g of 2-flurobenzaldehyde in 10 ml me thanol and left to stand at ambient temperature for 2 days, during which the crystalline products separated out (Fig. 3). The crude crystals were filtered off, washed with cold methanol. Good quality x-ray grade crystals were obtained by the slow evaporation of the solution in ethyl acetate (m.p.: 425-427 K). Analysis for the title compound $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2}$: Found (calculated): C: 71.75 (71.82); H: 4.26 (4.29); N: 7.90 (7.95).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with $\mathrm{C}-\mathrm{H}=0.95 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.18-1.20 U_{\mathrm{eq}}(\mathrm{C})$.

Figures

Fig. 1. Molecular structure of (I), $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2}$, showing the atom labeling scheme and 50% probability displacement ellipsoids.

Fig. 2. The molecular packing for (I) viewed down the b axis. Dashed lines indicate weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ intermolecular hydrogen bond interactions which link the molecule into chains propagating obliquely along the c axis.

N, N^{1}-Bis[(E)-2-fluorobenzylidene]-1-(2- fluorophenyl)methanediamine

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \quad Z=2$
$M_{r}=352.35$
$F(000)=364$
Triclinic, $P \overline{1}$
$D_{\mathrm{x}}=1.394 \mathrm{Mg} \mathrm{m}^{-3}$
Hall symbol: -P 1
$a=8.0215$ (5) \AA
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4026 reflections

$$
\begin{aligned}
& b=9.3740(4) \AA \\
& c=11.9744(6) \AA \\
& \alpha=99.184(4)^{\circ} \\
& \beta=93.179(5)^{\circ} \\
& \gamma=108.165(5)^{\circ} \\
& V=839.23(8) \AA^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \theta=4.6-32.4^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=200 \mathrm{~K} \\
& \text { Prism, colourless } \\
& 0.49 \times 0.29 \times 0.22 \mathrm{~mm}
\end{aligned}
$$

Data collection

Oxford Diffraction Gemini

 diffractometerRadiation source: fine-focus sealed tube graphite
Detector resolution: 10.5081 pixels mm^{-1}
φ and ω scans
11550 measured reflections
5484 independent reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.152$
$S=1.00$
5484 reflections
235 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0841 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.57$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
F1	$0.62912(14)$	$1.01485(11)$	$0.09363(8)$	$0.0596(3)$

F1A	0.21867 (14)	0.54600 (10)	-0.14842 (7)	0.0511 (3)
F1B	0.62463 (12)	0.41513 (8)	0.48075 (7)	0.0434 (2)
N1A	0.43939 (15)	0.62936 (12)	0.17778 (9)	0.0315 (3)
N1B	0.70316 (15)	0.77388 (12)	0.31351 (9)	0.0314 (3)
C1	0.58583 (18)	0.77356 (14)	0.21571 (11)	0.0297 (3)
H1A	0.6576	0.7941	0.1509	0.036*
C2	0.51189 (17)	0.90345 (13)	0.24663 (10)	0.0282 (3)
C3	0.53477 (19)	1.01805 (15)	0.18400 (11)	0.0344 (3)
C4	0.4682 (2)	1.13682 (16)	0.20930 (13)	0.0424 (4)
H4A	0.4871	1.2137	0.1640	0.051*
C5	0.3733 (2)	1.14203 (16)	0.30200 (13)	0.0427 (4)
H5A	0.3249	1.2222	0.3203	0.051*
C6	0.3491 (2)	1.03019 (16)	0.36807 (12)	0.0404 (3)
H6A	0.2855	1.0345	0.4324	0.049*
C7	0.4174 (2)	0.91224 (15)	0.34048 (11)	0.0348 (3)
H7A	0.3997	0.8359	0.3862	0.042*
C1A	0.38045 (18)	0.59817 (14)	0.07361 (10)	0.0284 (3)
H1AA	0.4326	0.6673	0.0256	0.034*
C2A	0.23439 (17)	0.45892 (13)	0.02440 (10)	0.0269 (3)
C3A	0.15517 (19)	0.43569 (15)	-0.08628 (11)	0.0325 (3)
C4A	0.0176 (2)	0.30824 (17)	-0.13529 (12)	0.0411 (4)
H4AA	-0.0330	0.2975	-0.2111	0.049*
C5A	-0.0459 (2)	0.19599 (17)	-0.07250 (14)	0.0479 (4)
H5AA	-0.1414	0.1067	-0.1050	0.057*
C6A	0.0291 (2)	0.21259 (16)	0.03835 (13)	0.0468 (4)
H6AA	-0.0148	0.1346	0.0813	0.056*
C7A	0.1674 (2)	0.34260 (15)	0.08573 (11)	0.0361 (3)
H7AA	0.2180	0.3532	0.1615	0.043*
C1B	0.67867 (17)	0.65547 (14)	0.35664 (10)	0.0281 (3)
H1BA	0.5831	0.5652	0.3263	0.034*
C2B	0.80098 (17)	0.65923 (13)	0.45521 (10)	0.0276 (3)
C3B	0.76856 (18)	0.54090 (14)	0.51567 (11)	0.0305 (3)
C4B	0.8769 (2)	0.54521 (16)	0.61103 (12)	0.0367 (3)
H4BA	0.8495	0.4630	0.6515	0.044*
C5B	1.0254 (2)	0.67148 (17)	0.64619 (12)	0.0409 (4)
H5BA	1.1014	0.6764	0.7115	0.049*
C6B	1.0645 (2)	0.79119 (16)	0.58684 (12)	0.0408 (4)
H6BA	1.1675	0.8775	0.6110	0.049*
C7B	0.95321 (19)	0.78464 (14)	0.49220 (11)	0.0335 (3)
H7BA	0.9809	0.8669	0.4518	0.040*

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	$0.0633(7)$	$0.0747(7)$	$0.0551(6)$	$0.0276(6)$	$0.0245(5)$	$0.0366(5)$
F1A	$0.0650(7)$	$0.0515(5)$	$0.0334(4)$	$0.0138(5)$	$-0.0069(4)$	$0.0125(4)$
F1B	$0.0381(5)$	$0.0310(4)$	$0.0537(5)$	$0.0007(4)$	$0.0004(4)$	$0.0093(4)$
N1A	$0.0280(6)$	$0.0319(5)$	$0.0289(5)$	$0.0041(5)$	$-0.0036(5)$	$0.0032(4)$

sup-4

supplementary materials

N1B	$0.0261(6)$	$0.0322(5)$	$0.0328(5)$	$0.0068(5)$	$-0.0042(5)$	$0.0047(4)$
C1	$0.0253(7)$	$0.0308(6)$	$0.0286(6)$	$0.0035(5)$	$-0.0018(5)$	$0.0056(5)$
C2	$0.0223(6)$	$0.0282(6)$	$0.0279(6)$	$0.0011(5)$	$-0.0053(5)$	$0.0043(5)$
C3	$0.0288(7)$	$0.0393(7)$	$0.0314(6)$	$0.0039(6)$	$0.0012(6)$	$0.0117(6)$
C4	$0.0439(9)$	$0.0345(7)$	$0.0473(8)$	$0.0078(7)$	$-0.0039(7)$	$0.0168(6)$
C5	$0.0429(9)$	$0.0327(7)$	$0.0489(8)$	$0.0125(6)$	$-0.0068(7)$	$0.0008(6)$
C6	$0.0397(9)$	$0.0411(7)$	$0.0363(7)$	$0.0101(7)$	$0.0041(6)$	$0.0016(6)$
C7	$0.0379(8)$	$0.0317(6)$	$0.0317(6)$	$0.0062(6)$	$0.0030(6)$	$0.0081(5)$
C1A	$0.0271(7)$	$0.0291(6)$	$0.0282(6)$	$0.0082(5)$	$0.0020(5)$	$0.0056(5)$
C2A	$0.0252(7)$	$0.0280(6)$	$0.0266(6)$	$0.0106(5)$	$0.0001(5)$	$-0.0001(5)$
C3A	$0.0327(8)$	$0.0361(7)$	$0.0294(6)$	$0.0146(6)$	$-0.0004(6)$	$0.0023(5)$
C4A	$0.0330(8)$	$0.0471(8)$	$0.0371(7)$	$0.0152(7)$	$-0.0087(6)$	$-0.0097(6)$
C5A	$0.0316(8)$	$0.0408(8)$	$0.0581(10)$	$0.0038(7)$	$-0.0024(7)$	$-0.0103(7)$
C6A	$0.0441(10)$	$0.0343(7)$	$0.0544(9)$	$0.0031(7)$	$0.0059(8)$	$0.0062(7)$
C7A	$0.0372(8)$	$0.0360(7)$	$0.0326(7)$	$0.0095(6)$	$0.0015(6)$	$0.0051(5)$
C1B	$0.0236(7)$	$0.0283(6)$	$0.0282(6)$	$0.0052(5)$	$0.0004(5)$	$0.0002(5)$
C2B	$0.0249(7)$	$0.0278(6)$	$0.0277(6)$	$0.0080(5)$	$-0.0003(5)$	$0.0008(5)$
C3B	$0.0278(7)$	$0.0264(6)$	$0.0345(6)$	$0.0066(5)$	$0.0037(6)$	$0.0022(5)$
C4B	$0.0420(9)$	$0.0373(7)$	$0.0360(7)$	$0.0171(7)$	$0.0054(6)$	$0.0126(6)$
C5B	$0.0406(9)$	$0.0509(8)$	$0.0327(7)$	$0.0182(7)$	$-0.0042(6)$	$0.0077(6)$
C6B	$0.0325(8)$	$0.0401(7)$	$0.0413(7)$	$0.0041(6)$	$-0.0087(6)$	$0.0033(6)$
C7B	$0.0306(7)$	$0.0295(6)$	$0.0368(7)$	$0.0055(6)$	$-0.0025(6)$	$0.0064(5)$

Geometric parameters (\AA, ${ }^{\circ}$)

F1-C3	$1.3562(16)$
F1A-C3A	$1.3571(16)$
F1B-C3B	$1.3558(15)$
N1A-C1A	$1.2637(15)$
N1A-C1	$1.4725(16)$
N1B-C1B	$1.2632(15)$
N1B-C1	$1.4602(16)$
C1-C2	$1.5173(18)$
C1-H1A	1.0000
C2-C3	$1.3782(18)$
C2-C7	$1.3958(19)$
C3-C4	$1.377(2)$
C4-C5	$1.383(2)$
C4-H4A	0.9500
C5-C6	$1.385(2)$
C5-H5A	0.9500
C6-C7	$1.383(2)$
C6-H6A	0.9500
C7-H7A	0.9500
C1A-C2A	$1.4656(17)$
C1A-H1AA	0.9500
C2A-C3A	$1.3914(16)$
C1A-N1A-C1	$116.40(11)$
C1B-N1B-C1	$120.47(10)$

C2A-C7A	$1.3968(18)$
C3A-C4A	$1.3681(19)$
C4A-C5A	$1.376(2)$
C4A-H4AA	0.9500
C5A-C6A	$1.391(2)$
C5A-H5AA	0.9500
C6A-C7A	$1.380(2)$
C6A-H6AA	0.9500
C7A-H7AA	0.9500
C1B-C2B	$1.4811(17)$
C1B-H1BA	0.9500
C2B-C3B	$1.3856(17)$
C2B-C7B	$1.3957(17)$
C3B-C4B	$1.3833(18)$
C4B-C5B	$1.380(2)$
C4B-H4BA	0.9500
C5B-C6B	$1.387(2)$
C5B-H5BA	0.9500
C6B-C7B	$1.3846(18)$
C6B-H6BA	0.9500
C7B-H7BA	0.9500

$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	123.58 (13)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$118.57(13)$

N1B-C1-N1A	114.48 (10)
N1B-C1-C2	108.04 (10)
N1A-C1-C2	109.45 (11)
N1B-C1-H1A	108.2
N1A-C1-H1A	108.2
C2-C1-H1A	108.2
C3-C2-C7	116.89 (12)
C3-C2-C1	121.87 (12)
C7- $22-\mathrm{C} 1$	121.24 (11)
F1-C3-C4	118.24 (12)
F1-C3-C2	118.47 (13)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	123.29 (13)
C3-C4-C5	118.71 (13)
C3-C4-H4A	120.6
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.6
C4-C5-C6	119.87 (14)
C4-C5-H5A	120.1
C6-C5-H5A	120.1
C7-C6-C5	120.09 (14)
C7- $66-\mathrm{H} 6 \mathrm{~A}$	120.0
C5- $66-\mathrm{H} 6 \mathrm{~A}$	120.0
C6-C7-C2	121.14 (13)
C6-C7-H7A	119.4
C2-C7-H7A	119.4
N1A-C1A-C2A	122.22 (12)
N1A-C1A-H1AA	118.9
C2A-C1A-H1AA	118.9
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	116.45 (12)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	121.58 (11)
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	121.97 (11)
F1A-C3A-C4A	118.62 (11)
F1A-C3A-C2A	117.81 (12)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{N} 1 \mathrm{~A}$	2.17 (18)
C1B-N1B-C1-C2	124.39 (13)
C1A-N1A-C1-N1B	-152.10 (12)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{C} 2$	86.45 (14)
N1B-C1-C2-C3	122.02 (13)
N1A-C1-C2-C3	-112.72 (13)
N1B-C1-C2-C7	-57.86 (15)
N1A-C1-C2-C7	67.40 (14)
C7-C2-C3-F1	178.64 (11)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{F} 1$	-1.25 (18)
C7-C2-C3-C4	-0.6 (2)
C1-C2-C3-C4	179.50 (13)
F1-C3-C4-C5	-179.35 (13)
C2-C3-C4-C5	-0.1 (2)
C3-C4-C5-C6	0.9 (2)
C4-C5-C6-C7	-0.9 (2)
C5-C6-C7-C2	0.2 (2)

C3A-C4A-H4AA	120.7
C5A-C4A-H4AA	120.7
C4A-C5A-C6A	120.35 (13)
C4A-C5A-H5AA	119.8
C6A-C5A-H5AA	119.8
C7A-C6A-C5A	119.82 (14)
C7A-C6A-H6AA	120.1
C5A-C6A-H6AA	120.1
C6A-C7A-C2A	121.23 (12)
C6A-C7A-H7AA	119.4
C2A-C7A-H7AA	119.4
N1B-C1B-C2B	119.11 (11)
N1B-C1B-H1BA	120.4
C2B-C1B-H1BA	120.4
C3B-C2B-C7B	117.18 (11)
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	121.92 (11)
$\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	120.89 (11)
F1B-C3B-C4B	118.11 (12)
F1B-C3B-C2B	119.07 (11)
C4B-C3B-C2B	122.82 (12)
C5B-C4B-C3B	118.61 (13)
C5B-C4B-H4BA	120.7
C3B-C4B-H4BA	120.7
C4B-C5B-C6B	120.43 (12)
C4B-C5B-H5BA	119.8
C6B-C5B-H5BA	119.8
C7B-C6B-C5B	119.84 (13)
C7B-C6B-H6BA	120.1
C5B-C6B-H6BA	120.1
C6B-C7B-C2B	121.11 (12)
C6B-C7B-H7BA	119.4
C2B-C7B-H7BA	119.4
C7A-C2A-C3A-C4A	0.7 (2)
C1A-C2A-C3A-C4A	-179.39 (13)
F1A-C3A-C4A-C5A	179.56 (13)
C2A-C3A-C4A-C5A	-0.4 (2)
C3A-C4A-C5A-C6A	-0.1 (2)
C4A-C5A-C6A-C7A	0.2 (2)
C5A-C6A-C7A-C2A	0.0 (2)
C3A-C2A-C7A-C6A	-0.5 (2)
C1A-C2A-C7A-C6A	179.60 (14)
$\mathrm{C} 1-\mathrm{N} 1 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	179.50 (12)
N1B-C1B-C2B-C3B	171.37 (12)
N1B-C1B-C2B-C7B	-7.51 (19)
$\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{F} 1 \mathrm{~B}$	-178.25 (12)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{F} 1 \mathrm{~B}$	2.83 (19)
$\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	1.9 (2)
C1B-C2B-C3B-C4B	-177.00 (13)
F1B-C3B-C4B-C5B	178.88 (12)

supplementary materials

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$0.54(19)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-179.57(12)$
$\mathrm{C} 1-\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$-179.66(11)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$171.24(13)$
$\mathrm{N} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	$-8.8(2)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{F} 1 \mathrm{~A}$	$-179.31(12)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{F} 1 \mathrm{~A}$	$0.63(19)$

$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}$	$-1.3(2)$
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	$0.0(2)$
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}$	$0.5(2)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$0.2(2)$
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	$-1.3(2)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 7 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	$177.59(13)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5B—H5BA $\cdots \mathrm{FlA}^{\mathrm{i}}$	0.95	2.53	$3.3871(16)$	151.

Fig. 1

Fig. 2

Fig. 3

